服務熱線
021-56412027
13818304482
13917842543
021-56412027
021-56422486
歡迎訪問上海久久久精品中文字幕麻豆发布電氣有限公司網站
更新日期:2012-08-02瀏覽:2770次
高壓快脈衝源的技術基礎核心是高壓快開關。以前固體器件開關盡管具有速度快、晃動小等優點,但由於技術與工藝水平的限製,不具備有電真空器件的大功率、耐高壓、大電流驅動能力等特點,因而隻能用於低壓快脈衝源領域,隨著半導體技術的發展,逐步出現了高壓固體器件,采用多管級聯方式,提高輸出功率,逐步改變了現狀,並且在中小功率的脈衝源領域中,逐步地取代了真空電子器件及氫閘流管。這裏重點研究基於固體開關的脈衝驅動技術,對雪崩管、高壓功率場效應管的機理進行了深入調研,對其開關原理和開關特性進行了綜合分析研究,著重對提高大功率高壓場效應管開關速度的柵極驅動及特殊的“過”驅動方法開展研究,確定采用MOSFET為主開關元件的技術方案,運用ORC.ADPspice軟件對電路仿真,分析並驗證高壓MOSFET單管、多管級聯及驅動理論,以提高脈衝的前沿的方法措施,達到了電路的優化設計。
1 MOSFET的選用和開關速度的提高
在選用納秒級的固體開關上,對固體雪崩三極管和MOSFET的性能進行了對比:
固體雪崩管被觸發工作在雪崩或二次擊穿瞬間時,能輸出很大的脈衝峰值電流,且觸發晃動和上升時間都很小;但是由於雪崩持續時間很短,大約隻有幾個ns,所以輸出脈衝平均功率較低,脈衝寬度較窄,電流難以控製。因此廣泛用於製作重複頻率低而脈衝功率高的窄脈衝源。
MOSFET具有大的脈衝開關電流(數十安培)、較高的漏源電壓(達千伏)、和小的導通內阻(歐姆量級),用它製作的脈衝源抗脈衝電磁幹擾能力較強。由於其輸入/輸出電容較大,因此它的開關速度較慢。但場效應管脈衝源電壓幅度和寬度容易調節,隻要在“過”驅動電路上開展研究,以提高MOSFET的開關速度,這樣就可以產生納秒級上升時間的大幅度的寬脈衝,那麽基於MOSFET納秒高壓寬脈衝源的研究就是十分可行的。
2 MOSFET的開關機理分析
采用“過”驅動能提高功率MOSFET的開關速度,就是使對MOSFET柵極驅動脈衝波形的前沿很快且上衝大大超過額定的柵源驅動電壓,柵極驅動源的驅動能力在很大程度上決定了MOSFET的開關速度。加快MOSFET的開關速度關鍵之一就是減小柵極電阻和柵極電容,提高跨導gm,提高柵極驅動電壓。
為了提高MOSFET管的開關速度,從電路設計角度考慮要求柵級驅動電路:能夠提供較大的驅動電流、驅動電壓以及具有較快前沿的柵極驅動脈衝,同時要求驅動電路的輸出電阻應盡量小。因此柵極驅動開關器件必須能輸出瞬間大電流,因而采用雪崩管來驅動MOSFET,可以得到很快的導通速度。
3 MOSFET過驅動電路設計
MOSFET柵極驅動開關器件必須能輸出瞬間大電流。而雪崩晶體管是工作在雪崩或二次擊穿狀態,瞬間輸出的脈衝峰值電流很大、幅度很高、晃動很小、開關速度又很快,用雪崩管驅動MOSFET可以得到很快的導通速度。實驗中采取射極跟隨和雪崩電路來觸發MOSFET,因而可以得到了較快的前沿和較小的輸出電阻。為了消除因分布電容耦合效應所造成的功率電路對驅動電路的影響,必須使用帶隔離的驅動電路。為此在電路設計中采用雪崩管加脈衝變壓器組合的“過”驅動的方法,提供驅動MOSFET柵極所需的大電流“過”驅動脈衝,以實現提高MOSFET開關速度的目的。過驅動電路是由射極跟隨器、雪崩管電路和脈變壓器耦合電路組成。
射極跟隨器起阻抗變換的作用,雪崩管脈衝峰值電流達60 A。電路設計時,高壓電源電壓為300 V,輸出級為集電極輸出形式,輸出負載為高頻脈衝變壓器(次級接高壓場效應管的柵極),由此管產生輸出脈衝極性為負,脈衝幅度300 V左右,脈衝前沿數納秒的大電流脈衝輸出,該輸出脈衝通過反相脈衝變壓器變成正的大電流“過”驅動脈衝去驅動場效應管,使高壓場效應管的開關速度得以提高。
柵極過驅動脈衝波形的前沿應該很快,且上衝大大超過額定的柵源驅動電壓值(脈衝前沿約為3 ns、幅度約為170 V),但因上衝的脈衝寬度很窄(約為7 ns)。因此可以達到快速驅動MOSFET的柵極,又不會損壞MOSFET。
3.1 單路MOSFET仿真實驗
為得到較快的脈衝驅動源輸出波形的前沿需要MOSFET的開關速度盡量快。根據對MOSFET的開關特性分析可知,從電路上考慮,加快MOSF ET的開關動作有以下途徑:
(1)提供較大的柵極驅動電流和電壓,使功率MOSFET柵極電容迅速充放電,從而減小功率MOSFET關斷時間;
(2)提供較快的驅動脈衝,從而提高功率MOSFET的關斷速度。
單管MOSFET實驗電路的輸出波形。波形幅度約1 kV,前沿時間約為1.6 ns,脈寬約1.4μs。MOSFET單管仿真和實驗的結果表明:選擇合適的管子和過驅動電路實現高壓脈衝源納秒級快前沿時間是可以辦到的。單管研究的突破,為多管串並聯的組合得到更高幅度納秒脈衝源的研究帶來了希望。
3.2 多管串並聯的MOSFET仿真與電路實驗
盡管隨著MOSFET技術的發展,其單管耐壓已經大大提高,zui高可以達到千伏以上,但是對許多特殊需求來說其電壓幅度是遠不夠的。脈衝源要求的輸出脈衝幅度要高達到4 kV以上,因此需多個千伏高壓場效應管串連才能達到幅度要求。
多管串聯的需要解決的問題是:由於各管的漏電流不一致導致串聯時分壓不一致,有些管子可能超過其額定耐壓而損壞;多管串聯時為了做到一致驅動,需要對每個管子實行“過”驅動。要得到輸出脈衝的快前沿,必須對多管級連的每個管子的柵源極間實行電壓脈衝過驅動。因此,多管串聯的柵極驅動不能采用直接驅動,而隻能采取脈衝變壓器耦合驅動柵極的方式。高速多管串並聯的zui關鍵技術是具有體積小耐高壓和納秒級瞬間大電流傳遞的驅動脈衝變壓器的研製。由於觸發脈衝要求有很快的前沿,因此要求脈衝變壓器的高頻響應的性能要好。此外,選用MOSFET作為高速高壓脈衝源的開關要兼顧到功率特性和開關特性,因為它們是互相製約的,由於管子的輸入電容很大,需要較大能量才能驅動,故對抗電磁幹擾是有利的,但因此需要大功率快脈衝的驅動,從而加大了研製難度,較易驅動也是選管的重要考慮因素。選擇高壓雪崩三極管來產生瞬間大電流來提高MOSFET的開關速度,每個驅動電路均由相同的5路組成,每路後接脈衝變壓器分別驅動一個MOSFET。其仿真輸出波形前沿約為1.4 ns,脈寬約為600 ns,幅度約為4 kV。
采用多管串聯方法可以提高脈衝源的其輸出脈衝幅度和功率,從而得到較大的脈衝寬度。值得注意的是:在多級串聯設計時應避免柵極間電壓不能超過額定值,漏極電流不應超過額定峰值電流,否則會使管子損壞。多管串聯時由於每個管子的漏電流不同,因此當加載高壓時會造成管子分壓不致,有些管子漏源之間電壓可能超過管子額定耐壓值,從而導致該管損壞,引起連鎖反應導致整路管子的損壞,因此設計時除盡量選擇漏電流一致的管子外,在每管漏、源之間並聯大電阻,這樣使各管分壓保持一致,防止各管因分壓不均勻而損壞。
實驗電路采用5 kV高壓場效應管串聯分別組成前沿充電組合開關,分別成形輸出脈衝的前沿,同時為達到較快的前沿速度,場效應管柵極驅動源采用高壓雪崩管加脈衝變壓器的“過”驅動方法,脈衝源輸出負載為100 Ω的高壓電阻。根據電路原理圖設計電路,搭建實驗平台,對各部分電路進行實驗和測試。
實際脈衝源輸出波形幅度約4.3 kV,前沿時間小於8 ns,脈衝寬度約105 ns,晃動小於3 ns。達到了設計的要求。
4 結語
實驗結果表明:研製出基於固體開關器件快脈衝源符合高壓脈衝輸出500~4 000 V可調,前沿小於10 ns,脈寬大於100 ns,晃動小於3 ns的技術指標的高壓脈衝驅動源,滿足了設計和使用的要求。